FILAMENTOUS RED ALGAE: MASTER KEY 4th edition

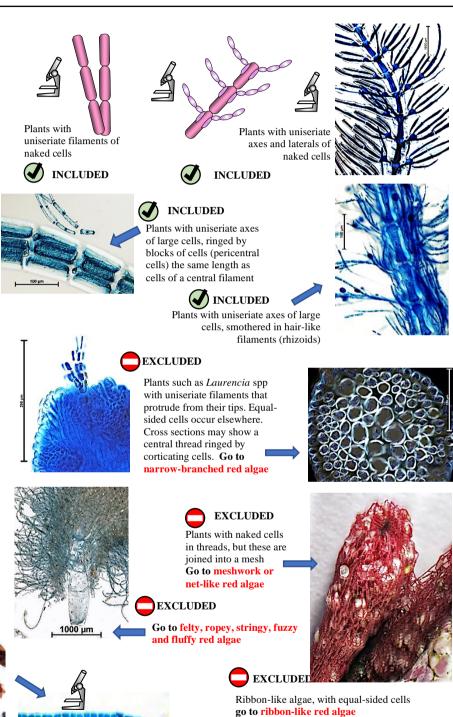
Red Algae.

With some 800 species, many of which are endemic (found nowhere else), southern Australia is a major centre of diversity for red algae. Classification is based on detailed reproductive features. Many species unrelated reproductively have similar vegetative form or shape, making identification very difficult if the technical systematic literature is used.

This key

Fortunately, we can use this apparent problem to advantage - common shapes or morphologies will allow you to sort some algae directly into the level of genus or Family and so shortcut a systematic search through intricate and often unavailable reproductive features. The pictured key below uses this artificial way of starting the search for a name. It's designed to get you to a possible major group in a hurry. Then you can proceed to the appropriate fact sheets within this website.

Scale:


the coin used as a scale is 24 mm or almost 1" wide. Microscope images of algae are usually blue stained.

This key is restricted to Red algae with

- uniseriate growth, that is, where most of the basic shape of the plant is produced from the growth of cells in a single line
- overall thread-like or *filamentous* construction with at least a few naked cells observable under the microscope
- excluded are leafy, blade- and -ribbon-like red algae and narrow-branched red algae consisting of relatively equal-sided (parenchymatous) cells. Also excluded are meshwork or net-like red algae and felty, ropey, stringy, fuzzy and fluffy red algae all of which are found in separate keys or algae at a glance
- this Master key is a first step in the search to identify red filamentous algae. It directs you to look in an appropriate one of the Parts I-XV

Unfortunately, in some filamentous algae the basic thread-like construction is obscured

- by additional cells (cortical cells) growing around the central thread. These can be a loose sheath of additional threads (rhizoids), or compact, irregularly arranged cells or uniformly arranged cells producing branches that are felty, compressed, or slightly flattened.
- in other algae, dense, overlapping rings or whorls of short side branches obscure the underlying filamentous construction requiring investigation using a microscope.

EXCLUDED

Blade-like algae, with naked, equal-sided cells **Go to blade like red algae**

FILAMENTOUS RED ALGAE MASTER KEY

1a. axes monosiphonous (exposed cells grow in a single line); branches are of about the same length. Compact wrappings (cortication) of regularly arranged cells around axes absent, although in some plants, loose rhizoids or scattered cells occur.

Figs 1-5. go to
Part I: algae with naked filaments

(Class: Bangiophyceae. Tribes: Monosporeae, Callithamnieae, Spermothamnieae, Griffithsieae, Bornetieae, Sphondylothamnieae Spongoclonieae, in the Family: Ceramiaceae. Family: Acrochaetiaceae)

1b. filaments ringed with short branches (whorl-branchlets) *or* tightly wrapped (corticated) with additional cells

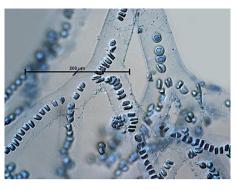


Fig. 1: Stylonema alsidii, threads of un-connected, disc-shaped cells

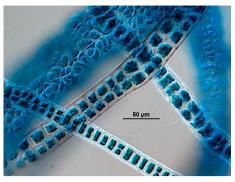
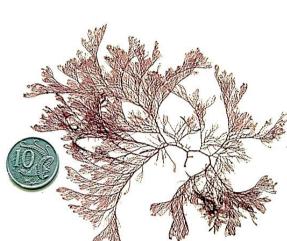
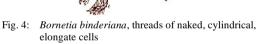




Fig. 2: Bangia atropurpurea, threads of naked, rectangular cells

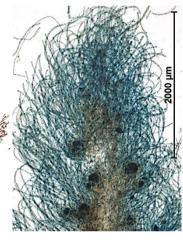


Fig. 4b: Spongoclonium, threads of naked, cylindrical cells curl over the tip of axes wrapped in dense rhizoids

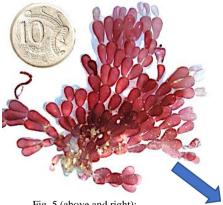
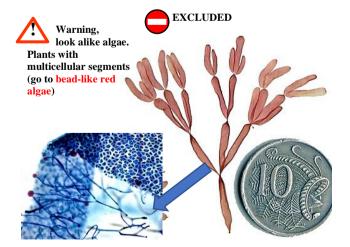
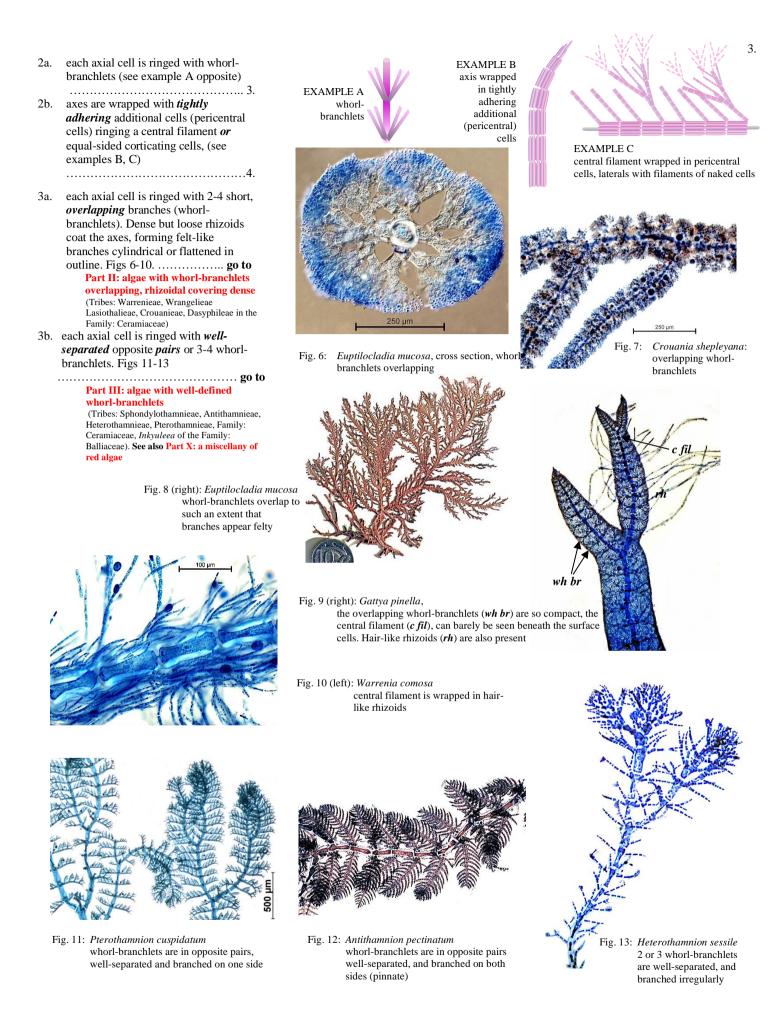




Fig. 5 (above and right):

Griffithsia monilis.
chains of naked, and very large
single cells
(RHS pic. J Huisman)

4a. the joints (nodes) between naked filament cells are ringed with *small* cells; main branches (axes) may be partly or wholly covered by additional corticating cells; bright gland cells may be present. Figs 14-18.

4b. cells of central filaments of main branches (axes) are ringed by (pericentral) cells equal in length to axial cells, so forming bands, although these are sometimes obscured by a covering of additional corticating cells; bright gland cells are *absent* or produced inwardly from the pericentral cells

..... 5.

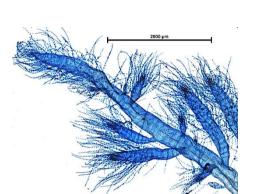


Fig. 16: *Spyridia squalida*, axis with a banded appearance and side branches with tufts of filaments

5a. apical cells are prominent; pericentral cells in rings of 4, usually with 2 opposite ones each producing a *pair of flanking cells* half their length; plants often quickly disintegrating after collection. Figs 19-21

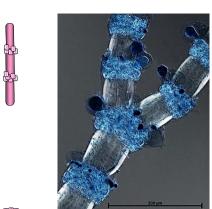


Fig. 14: Ceramium isogonum, wellseparated nodal bands

Fig. 17: *Spyridia dasyoides*, opposite, stiff, prominently banded side filaments

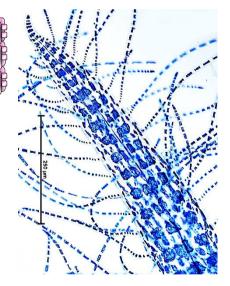


Fig. 19: Sarcotrichia tenera, prominent apical cell, flanking cells, hairs

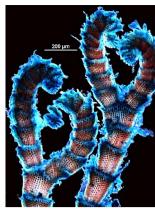


Fig. 15: Centroceras clavulatum, nodal cell rings; longitudinal columns of cells connect nodal rings

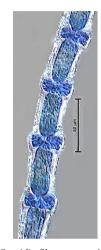


Fig. 18. Spyridia filamentosa, single filament, corticating cells at nodes 2 cells deep

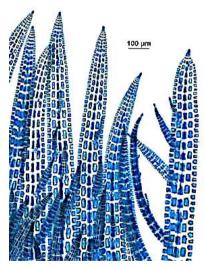


Fig. 21: *Platysiphonia delicata*, prominent apical cells

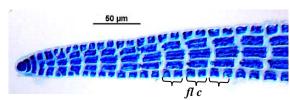


Fig. 20: Platysiphonia delicata, flanking cells (fl c) paired on 2 opposite pericentral cells

6a. branching forked, side branches similar to main branches

6b. side branches *short*, sometimes filamentous or naked or branched or in single lines (monosiphonous), or flatbranched or comb-like

.....

 pericentral cells 4-20. Extremely fine, colourless, hair-like branches (trichoblasts) occur close to growing points but may be rapidly shed. Figs 22-25.

7b. pericentral cells 3. Trichoblasts *absent*. Plants are *tiny*, rarely observed, tufted, and represent the sporangial stage of

Asparagopsis spp (sexual plants are described in narrow-branched red algae) Tetrasporangia (if present) divided in a cross pattern (cruciate).

Figs 26-28.

...... Falkenbergia stage of Asparagopsis

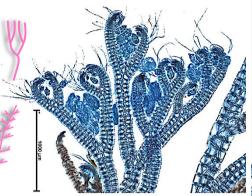
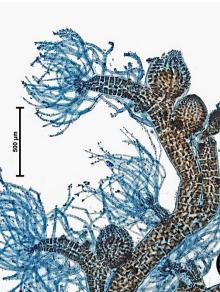



Fig. 22 (above): *Polysiphonia succulenta*, colourless trichoblasts at incurved tips, male branches

Fig 23 (right): *Polysiphonia atricapilla*, thin, branched colourless trichoblasts at tips; goblet-shaped mature female structures (cystocarps)

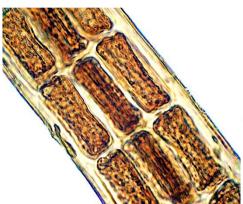


Fig. 24: *Polysiphonia teges*, bands of 4 pericentral cells (the underlying cells of the central filament, equal in length to pericentral cells, is obscured)

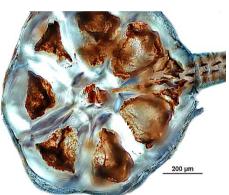


Fig. 25: Polysiphonia decipiens, cross section, central filament surrounded by 7 pericentral cells, origin of a side branch

Fig. 26 (left): Falkenbergia, several plants

Fig. 27: *Falkenbergia*, filaments with bands of 3 pericentral cells ringing narrow central cells

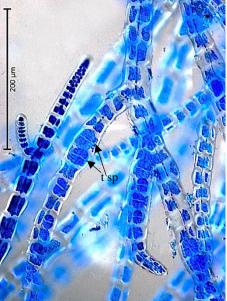
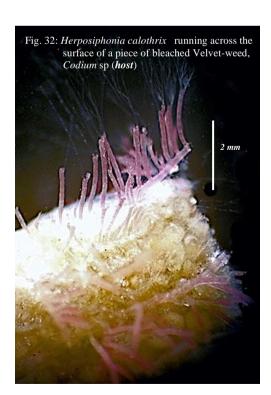


Fig. 28: *Falkenbergia*, tetrasporangia (*t sp*) divided in a cross pattern (cruciate)

8a. plants often tiny < 10 mm tall), creeping across or lying flat on other plants. Short side branches alternate in a *particular sequence* along axes. See examples opposite. Figs 29-33.


......... go to Part VII: red algal creepers
(Tribe: Hof the Family: Rhodomelaceae)

9a. pericentral cells 3-12 in number, can be seen in bands in side view of filaments or in cross sections of main branches (axes) at least near plant tips. Tip cells with *straight* cross-walls. Side branchlets may be naked (monosiphonous), branched or as single threads, sometimes so numerous and hair-like they give the plant a *woolly appearance*. Sporangia in *lines* or *spirals* in expanded branchlets or special cigar-shaped structures (stichidia); mature female structures (cystocarps) flask- or goblet-shaped

9b. pericentral cells *absent*, equal-sided cells forming close to tips partly obliterate the line of large cells of a central thread. Tip cells with *sloping* (oblique) cross-walls; short side branchlets *flat-branched*, alternating along main branches (axes). Sporangia *scattered* in side branches, cystocarps *loosely* wrapped in filaments of side branchlets. Figs 34-39 (*next page*).

go to Part VIII: axes
with irregular cortication

(Tribes: Ptiloteae and Rhodocallideae, of the Family: Ceramiaceae)

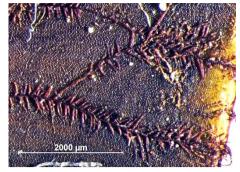


Fig. 29 (above): *Ditria expleta*plants lying along the flat blade of the
Brown alga host *Lobophora variegata*

Figs 30 (right): *Ditria expleta*pairs of undivided laterals, on opposite sides of an axis, one bearing sporangia

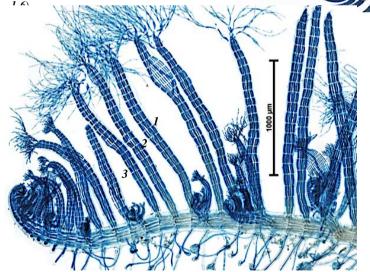


Fig. 33: *Herposiphonia calothrix Three* undivided determinate la

Three undivided determinate laterals (1,2,3) between stubby branched indeterminate laterals; numerous fine rhizoids from the base of the prostrate axis that is curved backwards at the apex

Fig. 34 Euptilota articulata, detail of feathery (pinnate) branching

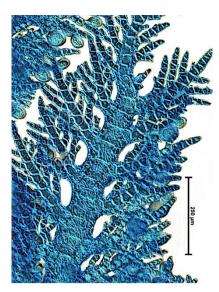


Fig. 35: Euptilota articulata: tetrasporangiate plant: alternating, comb-like side filaments; sloping (oblique) cross walls seen near tips; tetrasporangia (t sp) scattered in filaments

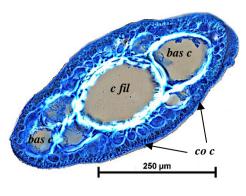
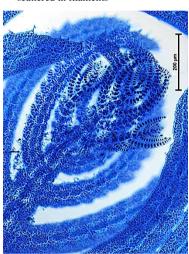



Fig. 36: Euptilota articulata, cross section: central filament (c fil); basal cells of side filaments (bas c); corticating cells (co c)

Fig. 37: *Rhodocallis elegans*, plants are flatbranched. The basic filamentous construction is visible only in undamaged branch tips and may be difficult to locate

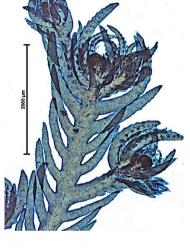


Fig. 38 (above): *Rhodocallis elegans*, naked mature female structures (cystocarps) at branch tips

Fig. 39 (left): *Rhodocallis elegans*, branch tip, filaments visible, side branches alternating

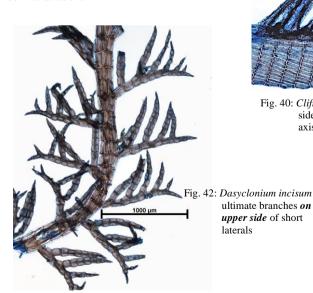
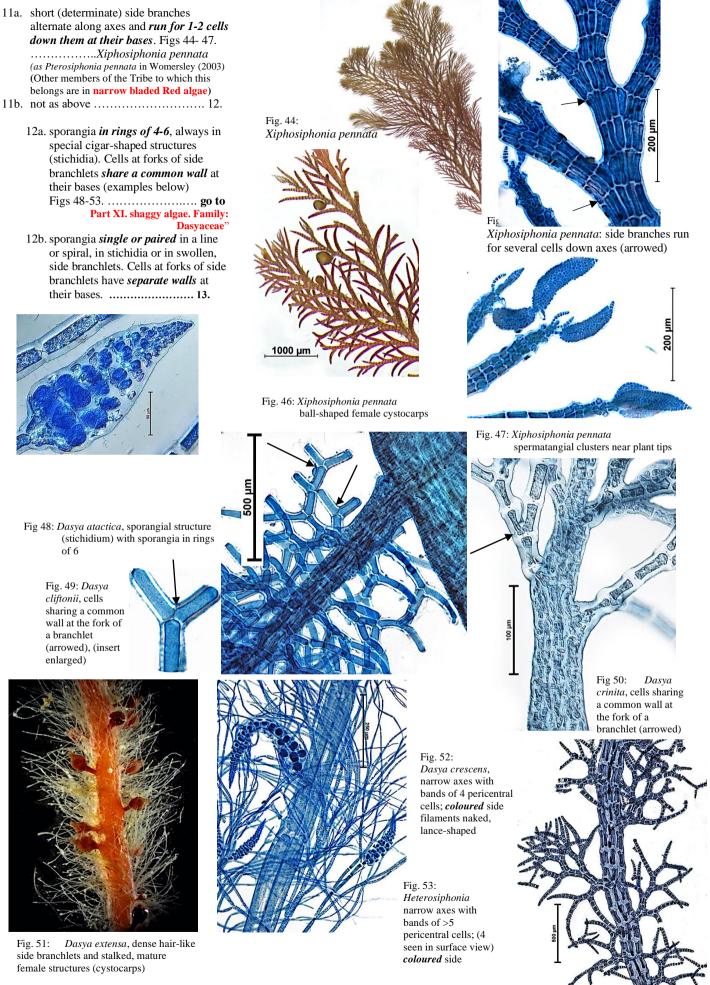


Fig. 40: *Cliftonaea pectinata* side branches on *one side* of a flattened axis curled at the tip



one side of a flat axis.

Fig. 41: Cliftonaea pectinata bleached specimen backlit to accentuate the one-sided branching of feathery laterals

13a. laterals monosiphonous, dense, forked, overtopping plant tips, giving the plant a fluffy appearance. Figs 54-57.

go to Part XII. Tribe
Lophothalieae

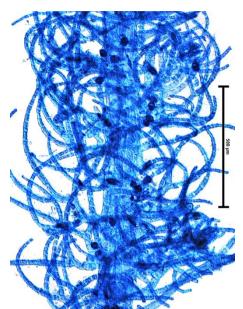


Fig. 54: *Veleroa adunca*, dense, hair-like side branchlets curved upward

Fig. 55: Brongniartella australis (left) and insert, above, main branches (axes) with bands of pericentral cells, cells at forks of side branchets with separate walls at their bases (compare with Fig. 49 for the Dasyaceae in which branch cells share a common cell wall)

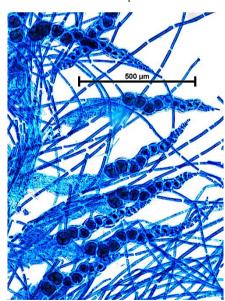
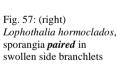
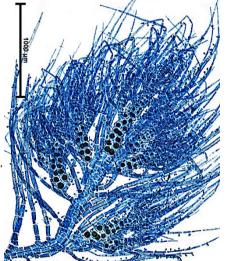




Fig. 56: (left) *Lophocladia kuetzingii*, sporangial structures (stichidia), sporangia *single*, in a spiral

(Tribe: Polysiphonieae)

Fig. 58: Alleynea bicornis

Fig. 59: Lophurella periclados

Fig. 60 a, b *Echinothamnion hystrix*Above: pressed plant
Right: detail of dense laterals

Fig. 61 a, b *Pityophykos tasmanica*Above: detail of flat laterals
Immediately above:
spiny appearance of pressed plant

REFERENCES

- Algaebase https://www.algaebase.org/ accessed March 2025
- Womersley, H,B.S (2003) Marine Benthic Flora of southern Australia Part IIID

GROUPS CONSIDERED IN THIS KEY

group	page/s	group	page/s
Acrochaetiaceae (Family)	2	Monosporeae (Tribe)	2
Antithamnieae (Tribe)	3	Polysiphonia (genus)	5
Acrochaetiaceae (Family)	2	Polysiphonieae (Tribe)	8, 9, 10
Balliaceae (Family)	3	Polyzonieae (Tribe)	7
Bangiophyceae (Class)	2	Pterosiphonieae (Tribe)	8
Bornetieae (Tribe)	2	Pterothamnieae (Tribe)	3
Callithamnieae (Tribe)	2	Ptiloteae (Tribe)	6, 7
[†] Ceramiaceae (Family)	2, 3, 4	Rhodocallideae (Tribe)	6, 7
Ceramieae (Tribe)	4	Sarcomeniaceae (Family)	4
Crouanieae (Tribe)	3	Spermothamnieae (Tribe)	2
Dasyaceae (Family)	8	Sphondylothamnieae (Tribe)	2, 3
Dasyphileae (Tribe)	3	Spongoclonieae (Tribe)	2
Falkenbergia stage of Asparagopsis	5	Spyrideae (Tribe)	4
Griffithsieae (Tribe)	2	Warrenieae (Tribe)	3
Herposiphonieae (Tribe)	6	Wrangelieae (Tribe)	3
Heterothamnieae (Tribe)	3	Xiphosiphonia pennata	8

[†]as Wrangeliaceae in *Algaebase*