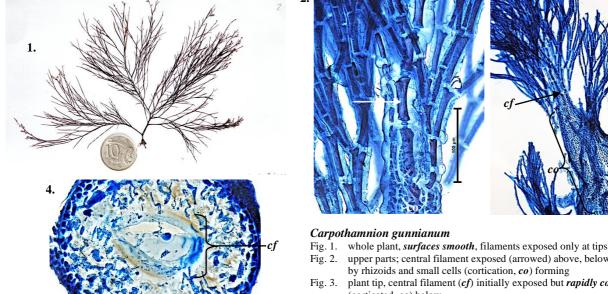
FILAMENTOUS RED ALGAE PART XIII: TRIBE CALLITHAMNIEAE OF THE FAMILY CERAMIACEAE

This guide Formal classification of algae relies on investigating microscopic reproductive features in detail. Often a complete set of reproductive stages is unavailable in the specimens to be investigated, making identification very difficult if the technical systematic literature is used. Fortunately some algae grow in specific places and some have recognisable shapes that allow them to be sorted directly into the level of Genus or Family and so shortcut a systematic search through intricate and often unavailable reproductive features. The materials below use this artificial way of searching for a name. Then you can proceed to the appropriate fact sheets or keys to refine your identification.


Limitations Unfortunately, to use this search strategy, microscopic investigation of specimens will be needed. Also, this guide overlaps somewhat with "filamentous red algae: Part I" and species may appear in more than one step of the key in order to capture those that may have variable shapes.

Images Unless acknowledged otherwise, all images come from pressed specimens or the extensive slide collection of the algal unit, State Herbarium of S. Australia, collections generated by the late Professor Womersley and his workers over some 60 years. Images with dark backgrounds have been taken used below

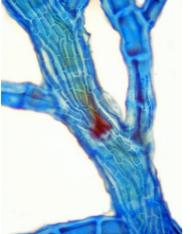
using phase contrast or interference microscopy to highlight transparent structures. Other images may be stained dark blue. The coin used as a scale is 24 mm or almost 1" across.

Scale

Names Scientific names and means of sorting the species follow that found in Womersley, H B S. (1984-2003). The Marine Benthic Flora of southern Australia, as it continues to provide the most comprehensive and accessible account. Recent name changes from the Website Algaebase" have been added. FEATURES OF THE TRIBE plants are small ($\leq 100 \text{ mm}$) *filamentous*, **TRIBE** tip cells of filaments divide transversely **CALLITHAMNIEAE** (not obliquely) and are visible at plant tips vegetative filaments produce only a single, short (determinate) side branch per cell • major filaments (axes) can be naked or axes coated (corticated) almost to smooth, cellular cortication wrapped loosely in rhizoids or coated with the plant tips in a smooth outer absent but axes can be wrapped closely adhering, fine rhizoids and minute cell-layer of closely packed cells loosely or tightly in filamentous bristles Carpothamnion gunnianum rhizoids after fertilisation, the female structures Go to page 10 (carposporophytes) develop in pairs straddling axial cells; a ring of short cells (involucre) develops in some species **GENERA AT A GLANCE** lower branches naked or with loose, ropey lower branches wrapped in filaments or stringy rhizoids or rhizoids lying (rhizoids) producing minute outward intimately within cell walls *pointing* bristles each only several cells long Callithamnion Hirsutithallia (includes Aglaothamnion) Go to pages 7-9 branching near plant tips in 2 rows branching near plant tips is radial Callithamnion 3 spp Callithamnion 6 spp Go to pages 3,4 Go to pages 4-6 **EXAMPLES**

- upper parts; central filament exposed (arrowed) above, below, covered by rhizoids and small cells (cortication, co) forming
- plant tip, central filament (cf) initially exposed but rapidly covered (corticated, co) below
- Fig. 4. cross section; large central filament cell (cf) wrapped in rhizoids and small outermost cells

EXAMPLES (continued)


Callithamnion

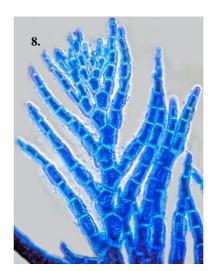
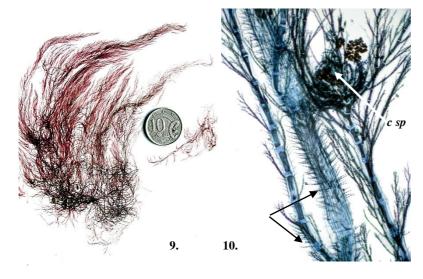

example: C. circinnatum

Fig. 5. whole plant, base ropey or stringy in this sp Fig. 6. detail *naked upper branches* with spores and short side branches with *radial branching*



Callithamnion

example: *C. pinnatum*Fig. 7. lower axis cells with rhizoids running through the cell walls

Fig. 8. plant tips, short side branches in 2 rows from each axial cell

Hirsutithallia example: H. angustata see also "some felty, ropey, stringy, furry, fuzzy, fluffy Red algae"

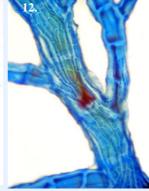
Fig. 9. whole plant

Fig. 10. microscopic detail of branching pattern; fine, closely adhering rhizoids that produce outward-pointing bristles (arrowed); female reproductive structure (c sp) with ring of short branches (involucre) at the base

CALLITHAMNION AT A GLANCE (PAGES 3-6)

Of the 10 species in southern Australia, *Callithamnion circinnatum*, *C. confertum*, *C. pinnatum* and *C. propebyssoides* are considered rare. Fact Sheets for them can be found in this Website. They are included below for completeness, however.

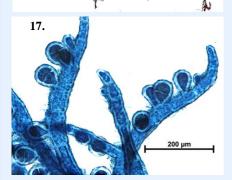
Most the southern Australian species of *Callithamnion* have been placed in the genus *Aglaothamnion* in "*Algaebase*".

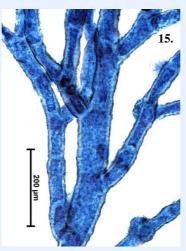

Refer to the table on page 12 for these name changes

BRANCHING NEAR PLANT TIPS IS IN 2 ROWS

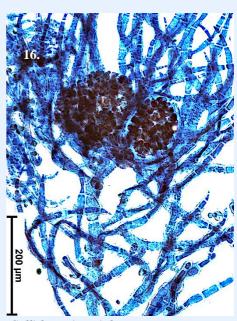
Callithamnion pinnatum

- plants pale red
- rhizoids at bases are intimately pressed against the large axial cells of the filament
- recorded for only 2 sites in Victoria

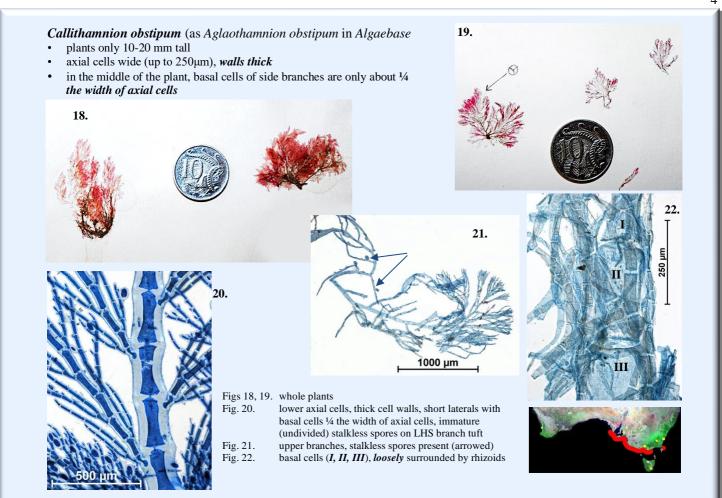


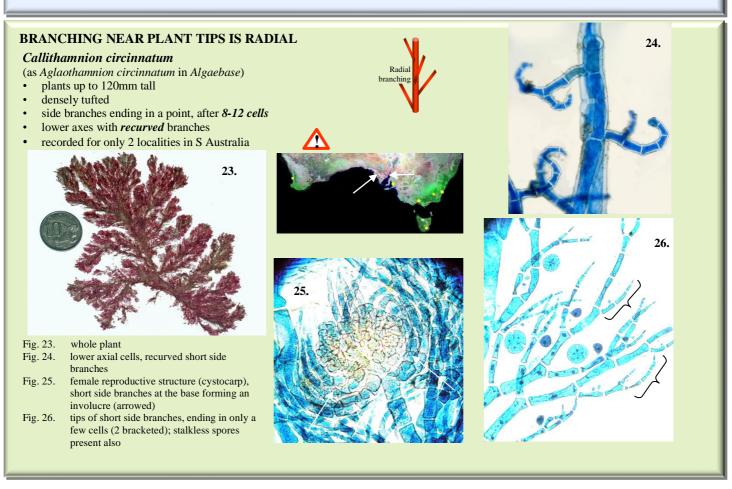


- Fig. 11. whole plant, pale red
- Fig. 12. near the plant base; *closely adhering rhizoids* (arrowed) obscuring the large-celled axial filament beneath
- Fig. 13. tip displaying 2-sided branching pattern, spores in groups of 1-3, *on small stalks*



- Fig. 14. whole plants
- Fig. 15. axis, free of rhizoids, basal cells of side branches ½ width of axial cells
- Fig. 16. paired, *rounded*, female structures (carposporophytes)
- Fig. 17. stalkless spores on *inner side* of short branches





Callithamnion violaceum

(as Aglaothamnion violaceum in Algaebase)

- plants densely branched, dark red
- rhizoids absent or loose
- basal cells of the short side branch cells
 ½ width of axial cells
- spores on *inner sides* (adaxial) of short branches

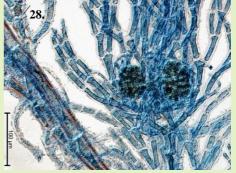
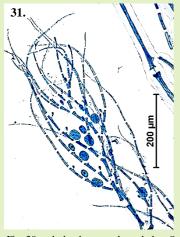
Callithamnion pseudobyssoides

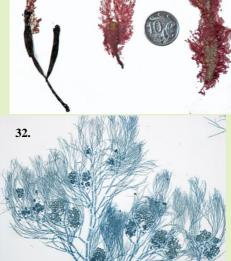
(as Aglaothamnion pseudobyssoides in Algaebase)

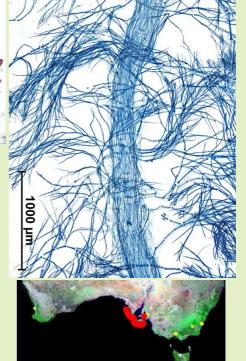
- plants floppy, with dense, flattopped apical tufts
- · basal cells without a rhizoid coat
- axial cells narrow, about 50μm wide
- paired female structures (carposporophytes) with a cluster of short branches at the base

Fig. 27. dense flat-topped apical clusters base with

29.


Fig. 28 paired carposporophytes; axis rhizoids but no rhizoidal coat


Callithamnion shepherdii

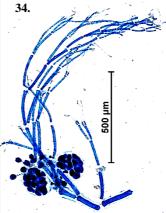
(as Aglaothamnion shepherdii in Algaebase)

- · basal axial cells coated in rhizoids
- tip cells about 4 μm wide, length/breadth ≈ 8
- cells uninucleate

- Fig. 29. whole plants on the red alga Osmundaria
- Fig. 30. axis heavily wrapped in rhizoids
- Fig. 31. elongate axial cells and side tuft with stalkless spores
- Fig. 32. apical tufts with paired, rounded female structures (carposporophytes)

Callithamnion caulescens

- tip cells about 6µm wide, length/breadth ≈ 2, often ending in a hair
- very similar to *C. shepherdii* (above), but cells *multinucleate*


Fig. 33. whole plants

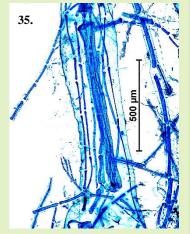
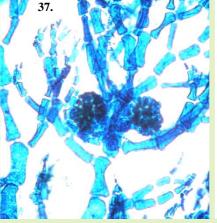

Fig. 34. apical tufts with paired, rounded female structures (carposporophytes)

Fig. 35. elongate axial cell near plant base, rhizoids within the cell wall

1000 µm


Callithamnion confertum

(as Aglaothamnion confertum in Algaebase)

- axial cells relatively short
- side tufts with crowded branches
- basal cells of short branches about 50µm
- female reproductive structures (carposporophytes) rounded

found only at a single site? on other algae

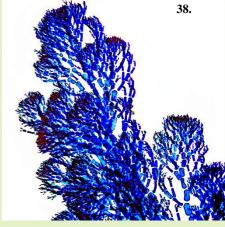
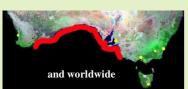


Fig. 36. whole plants originally growing on the Green alga, Caulerpa brownii


Fig. 37. stubby side branches, paired, rounded female reproductive structures (carposporophytes)

dense side branches, radially arranged Fig. 38.

Callithamnion propebyssoides as Aglaothamnion propebyssoides in Algaebase

- only 5-15mm tall
- grows on gelatinous Red algae
- · paired female reproductive structures (carposporophytes) lobed

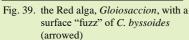
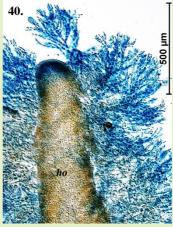
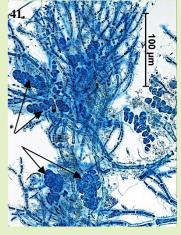
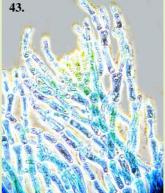
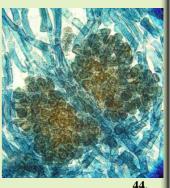




Fig. 40. surface microscope view of the surface "fuzz" on the host (ho)

Fig. 41. axes and side branches similar, carposporophytes lobed (two pairs are arrowed)





Callithamnion propebyssoides (as Aglaothamnion propebyssoides in Algaebase)

- side branches are short, but obvious
- tip cells are very small, 6-9 µm long
- paired female spore-structures (carposporophytes) are *lobed*
- only known from Port Broughton, on the Brown alga, Caulocystis and very similar to C. byssoides

plants on the Brown alga, Fig. 42.

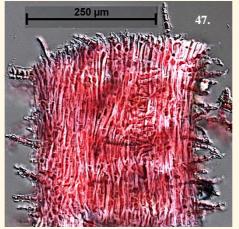
Fig. 43. plant tips with small tip cells

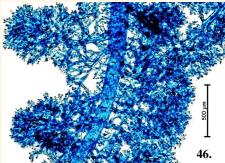
Fig. 44. paired female spore structures (carposporophytes, ca sp) are lobed

HIRSUTITHALLIA AT A GLANCE (pages 7-9)

Hirsutithallia mucronata

- tip cells pointed
- dense rhizoid coating practically to the plant tips
- plant grows on other algae




Fig. 45. whole plant Fig. 46. dense, stiff short side branches

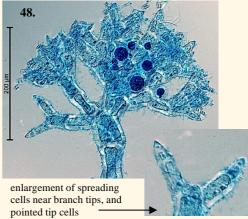
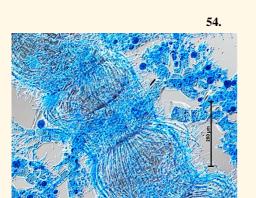
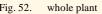

Fig. 47. axis from the plant base; dense rhizoids cover the underlying large axial cells and produce minute, outwardpointing bristles

Fig. 48. detail of a short branch

§Hirsutithallia laricina

- tip cells rounded
- rhizoids coat axes practically to the plant tips
- cells of side branches about 250μm long
- side branches radially branched or branched on one side
- often grows on Posidonia sea grass




- Fig. 49.
- whole plant Fig. 50. detail of branching pattern
- Fig. 51 stubby axial cells visible beneath rhizoidal covering; side branches of small cells

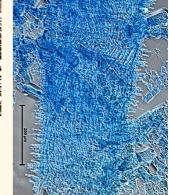
[§] an underwater image can be seen in Huisman, J.M. (2019). Marine plants of Australia Revised edition. Crawley Western Australia: UWA Publishing.

Hirsutithallia tincta

- minute, dense, outwardpointing bristles
- short side branches radially branched
- basal cells of side branches about 70 µm wide

branching pattern

Fig. 53 Fig. 54. bulging axial cells covered with rhizoids bearing outward-pointing bristles; densely stained sporangia


Fig. 55. spreading branching pattern in detail

broad axial cells obscured by a coat of rhizoids bearing Fig. 56. outward-pointing bristles

branch tufts of the short side branches tend to be on outer sides (abaxial) diagnosis car be difficult

basal cells of side branches are about 120µm wide

only known from 1 locality, on sea-grasses

59.

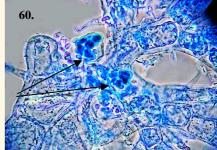
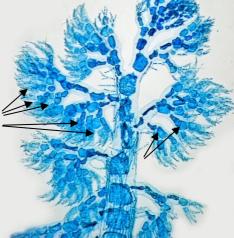



Fig. 57. whole plants on sea-grass leaves Fig. 58. axis of box-shaped cells obscured by rhizoids, densely branched short side branches

Fig. 59. branching pattern: 3 sets (arrowed) of tufts arising on the outer sides of short branches

Fig. 60. darkly stained, paired, lobed female structures (carposporophytes) (arrowed) lacking a basal ring (involucre) of branches

Hirsutithallia angustata

- · plant slender and floppy
- axis cells covered with rhizoids mainly at the plant base
- axial cells are elongate, > 5 times longer than wide in upper parts of plants
- the paired female structures (carposporophytes) have a basal ring of short branches (involucre)

Fig. 61. whole plant

Fig. 62. Whole plants

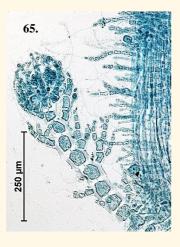
Fig. 62. details of thin axes - one naked, one with a light covering of rhizoids bearing outward-pointing bristles, and an older axis covered in rhizoids and bristles; side branches are short; spores have exuded from the female structure (carposporophyte) exposing a basal ring

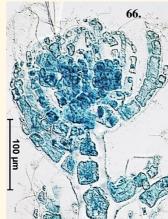
Hirsutithallia formosa

- · plants are relatively robust and openly branched
- · cells are about as long as broad

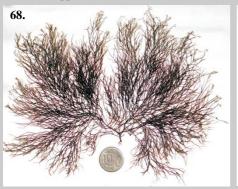
of short branches

- axis cells covered with rhizoids are found mainly at the plant base
- the paired female structures (carposporophytes) are irregularly lobed and have a basal ring of short branches (involucre)


Figs 63, 64. two whole plants


- Fig. 65. towards the plant base, short side branch tipped with paired carposporophytes ringed at the base by short branches (involucre)
- Fig. 66. detail of paired carposporophytes
- Fig. 67. axis lightly clothed in rhizoids, short side branches with


densely staining spores



CARPOTHAMNION GUNNIANUM AT A GLANCE

- axes with a central filament of large cells, wrapped in a thick layer of filamentous rhizoids from near plant tips and coated (corticated) almost to the plant tips in a smooth, outer cell layer of closely-packed cells
- *tufts* of naked, filamentous, radially-branched, short, side-branches occur; single cells arise from each of the main cells, a characteristic of the Tribe: Callithamnieae
- when tufts are denuded, a smooth, narrow-branched plant body remains, requiring a cross section in order to detect the central large-celled filament wrapped in numerous rhizoids and coated with closely-packed small cells that are diagnostic of the genus

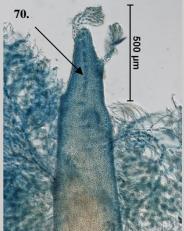
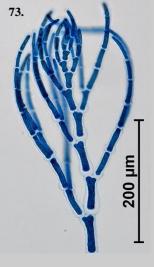
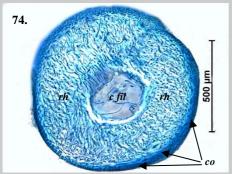


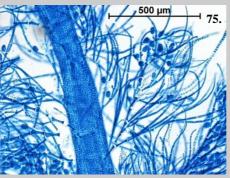
Fig. 68. whole plant

Fig. 69. detail of branched axes, denuded of short side tufts

Fig. 70. microscope view of the plant tip with filamentous tufts intact; central large-celled filament still visible (arrowed) towards the tip before becoming covered by rhizoids and a coating of small cells




details of filamentous short-branches


Fig. 71. at plant tip, central filament still exposed in the axis

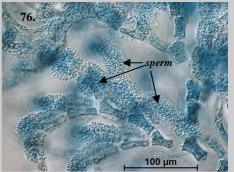

Fig. 72. fully developed side branch

Fig. 73. upper part of a side branch, single branches arising from each of the main cells, a characteristic of the Tribe

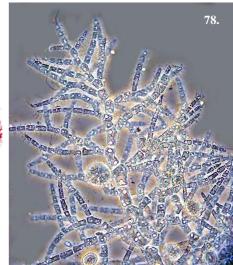
- Fig. 74. cross section of an axis; central large filament cell (*c fil*), wide "wrapping" of filamentous rhizoids (*rh*) outer closely-packed layer of small cells (cortex, *co*)
- Fig. 75. axis and side-branches bearing deeply staining spores
- Fig. 76. side branch bearing clusters of male spermatangia (sperm)

CALLITHAMNIEAE LOOK-ALIKES

Dasythamniella 5 spp Tribe: Compsothamnieae similarities:

- · plants are filamentous
- axes are wrapped in rhizoids
- each axial cell of short (determinate) branches produces a single cell

differences


- plants are often larger
- carposporophytes are not twinned nor do they straddle axial cells, but several are formed sequentially on short fertile branches

EXAMPLE:

Fig. 77. whole plant of *Dasythamniella superbiens* Fig. 78. Detail of branching of a short side branch; globular spores

79.

Spongoclonium and Lophothamnion Tribe: Spongoclonieae similarities:

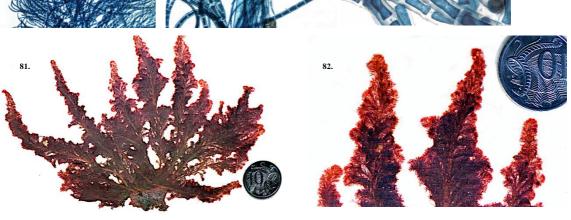
- · plants are filamentous
- axes are often wrapped in rhizoids
- axial cells produce short side branches (determinate branches)

differences

- · plants are often larger
- carposporophytes are not twinned nor do they straddle axial cells, but appear to form at tips of short branches
- side branches may crowd over ("over-top") and obscure tips of plants
- spores may be divided into 4 or more parts; (polysporangia) are produced in *Lophothamnion*

EXAMPLE: SPONGOCLONIUM

Fig. 79. pressed plant of Spongoclonium conspicuum


Fig. 80. detail of side branches overtopping the plant tip; dark masses of carposporophytes on short side branches

83. 84. Section 1982 Section 1985. Section 1

${\tt EXAMPLE:}\ LOPHOTHAMNION$

- Fig. 81. pressed plant of Lophothamnion hirtum
- Fig. 82. dense branching at tips
- Fig. 83. short branches overtopping the plant tip
- Fig. 84. axis wrapped in rhizoids
- Fig. 85. short branches with polysporangia

Baldock, R.N. (2025) Tribe Callithamnieae of the Family: Ceramiaceae, 12 pages Algae Revealed

ACKNOWLEDGEMENT

Thanks to Carolyn Ricci of the State Herbarium of South Australia who gave helpful advice and also edited the material.

LIST OF SPECIES ILLUSTRATED

species	author/s	page/s	name in Algaebase	author/s
Callithamnion	Arnott ex Harvey	6	Aglaothamnion	(Bonnemaison)
byssoides (syn.)			tenuissimum	Feldmann_Mazoyer
Callithamnion	(J. Agardh) Womersley	5		
caulescens				
Callithamnion	Womersley	2, 4	Aglaothamnion	(Womersley) Cormaci, G.
circinnatum (syn.)	·		circinnatum	Furnari & Alongi
Callithamnion	Womersley	6	Aglaothamnion	(Womersley) Cormaci, G.
confertum (syn.)	·		confertum	Furnari & Alongi
Callithamnion	(Cowling, Kraft &	4	Aglaothamnion	Cowling, Kraft &
obstipum (syn.)	J.A.West) Womersley		obstipum	J.A.West
Callithamnion	Womersley	2, 3		•
pinnatum				
Callithamnion	Womersley	6	Aglaothamnion	(Womersley) Cormaci, G.
propebyssoides (syn.)			propebyssoides	Furnari & Alongi
Callithamnion	P. Crouan & H. Crouan	5	Aglaothamnion	(P. Crouan & H. Crouan)
pseudobyssoides (syn.)			pseudobyssoides	Halos
Callithamnion	Womersley	5	Aglaothamnion	(Womersley) Cormaci, G.
shepherdii (syn.)			shepherdii	Furnari & Alongi
Callithamnion	Harvey	3	Aglaothamnion	(Harvey) Cormaci, G,
violaceum (syn.)			violaceum	Furnari & Alongi
Carpothamnion	(Harvey) Kützing	1, 10		
gunnianum				
Dasythamniella		11		
Hirsutithallia abaxialis	Wollaston & Womersley	8		
Hirsutithallia	(Hooker f.& Harvey)	2, 9		
angustata	Wollaston & Womersley			
Hirsutithallia formosa	(Harvey) Wollaston &	9		
y	Womersley			
Hirsutithallia laricina	(Harvey) Wollaston &	7		
	Womersley			
Hirsutithallia	Wollaston & Womersley	7		
mucronata				
Hirsutithallia tincta	Wollaston & Womersley	8		
Lophothamnion		11		
Spongoclonium		11		