## SLIMY/MUCILAGINOUS RED ALGAE

Red Algae.

With some 800 species, many of which are endemic (found nowhere else), southern Australia is a major centre of diversity for red algae. Classification is based on detailed reproductive features. Many species unrelated reproductively have similar vegetative form or shape, making identification very difficult if the technical systematic literature is used.

This key

Fortunately, we can use this apparent problem to advantage - common shapes or morphologies will allow you to sort *some* algae directly into the level of Genus or Family and so shortcut a systematic search through intricate and often unavailable reproductive features. The pictured key below uses this *artificial* way of starting the search for a name. It's designed to get you to a possible major group in a hurry. Then you can proceed to the appropriate fact sheet to verify identification.

Scale and stains: Names The coin used as a scale is 24 mm or almost 1" wide. Microscope images of algae are usually blue stained or have a black background

These generally follow Womersley, 1994 and 1996 as these continue to provide the most accessible and comprehensive accounts of the relevant algal groups. Recent updates of names in *Algaebase* are provided within the key and are found in the table on page 11.



This key is *restricted* to algae with a *slimy/mucilaginous/"gooey" consistency*. Although this characteristic is subjective and includes widely different and un-related groups it can get you a possible species or genus name. Unavoidably, as with many algae, microscope work will be needed to separate species.



## PICTURED KEY

- 1a. cross sections show large oval or equal-sided cells (parenchyma) in the core (medulla) of fronds Figs 1, 6
- 1b. cross sections or tissue squashes show fine threads or filaments in the core of fronds. Fig. 2.

2.

2a. plants flat, leafy; major branches (axes) >10mm wide, fronds sparsely fringed with *microscopic teeth*; small cells appear in vague rings (*rosettes*) about larger, deeper cells in surface microscope views. Figs 3-7.

as *Gloiophyllis barkeriae* in Womersley 1996 2b. axes flat or cylindrical, <10mm wide,

teeth absent, although female reproductive structures (cystocarps) may have horns; rosettes absent.

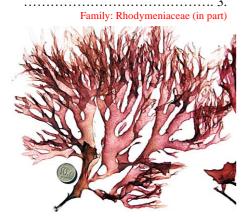
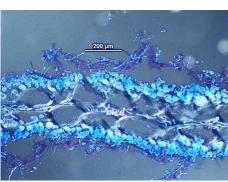




Fig. 3: Gloiophyllis barkeriae



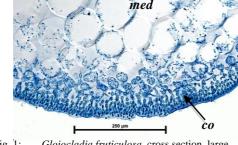
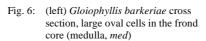
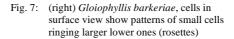





Fig. 1: Gloiocladia fruticulosa, cross section, large ovoid cells in the core (medulla, med) and branched tufts of small cells in the outer layer (cortex, co)



Fig. 4: Gloiophyllis barkeriae





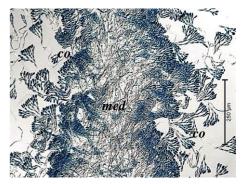
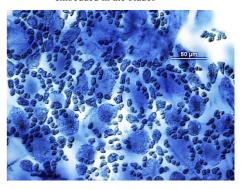




Fig. 2: Helminthocladia, tissue squash, fine filamentous core (medulla, med), branched tufts of cells in the outer layer (cortex, co)



Fig. 5: Gloiophyllis barkeriae, detail of minute teeth along blade edges and dark female structures (cystocarps) embedded in the blades



- 3a. branches generally flat, 4-10 mm wide, smaller side branches arise from branch *edges* .................................. 4.

- 5b. branching regular, branches narrowing near tips, plants usually on rocks. Figs 15, 16.



Fig. 8: Gloiocladia fruticulosa



Fig. 9: Gloiocladia fruticulosa, cylindrical branches, female reproductive organs (cystocarps) with 2-4 horns



Fig. 10: Gloiocladia polycarpa, main branches forked



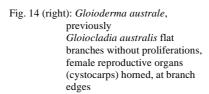

Fig. 11: Gloiocladia polycarpa, detail of small proliferations



Fig. 12: Gloiocladia polycarpa, horned cystocarps at branch margins



Fig. 13 (left): Gloioderma australe, previously Gloiocladia australis attached to a seagrass



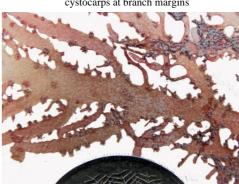
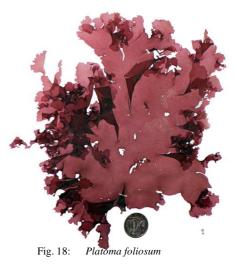



Fig. 15 (left): Gloioderma halymenioides previously Gloiocladia halymeniodes



Fig. 16 (right): Gloioderma halymenioides previously Gloiocladia halymeniodes, narrow branch endings, spiky cystocarps



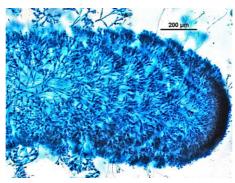
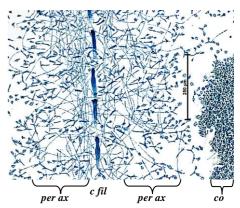

Baldock, R.N. (2024). Slimy/mucilaginous red algae. 11 pages Algae Revealed.

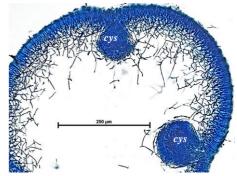
branches cylindrical (terete, circular in cross section), or narrowcompressed (ovoid in cross section),  $\approx$  4 mm wide. See Fig. 17, but also step #14a for Gibsmithia womersleyi, and Tsengia spp in which the branches flatten on drying 6b. algae consisting of flat blades (foliose)  $\geq 10$  mm wide. See Fig. 18. branches internally a core of loose microscopic threads, embedded in gel, ending in bunches or chains of outward-pointing cells, readily separated when making a tissue squash for microscopic examination. See Fig. 19. ...... 8. 7b. tissue squash shows a large central thread in the branch core mixed with fine rhizoids and radiating threads in rings, ending in outward pointing bunches of small cells. See Fig. 20. Family: Dumontiaceae (in part) outer layers (cortex) ending in relatively compact hemispherical cells; cores, initially of branched threads, may become hollow. Figs 21, 22. ...... Nothogenia fastigiata Family: Galaxauraceae 8b. outer layers *loosely* held together; branches not truly hollow, although the sparsity of core filaments can give that impression in cross sections ......9. 9a. *stellate cells* (densely staining cells with "spidery: radiating arms) found in tissue squashes see Fig. 23. 9b. stellate cells *absent* in tissue squashes









Fig. 19: Helminthora, tissue squash, numerous fine threads ending in radiating branched tufts of small cells



Dasyphloea insignis, tissue squash, central thread (c fil) loosely wrapped in rhizoids, radiating threads (per ax) ending in small surface cells (cortex, co, seen here in face view)



Fig. 21: Nothogenia fastigiata



Nothogenia fastigiata, cross section; compact outer cells (cortex, co), core of branched threads (medulla, med), hollow centre, embedded female structures (cystocarps, cys)

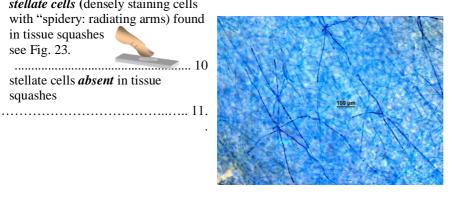



Fig. 23: Halymenia floresia, surface of a branch, focussed through surface cells to view thin stellate cells

Family: Halymeniaceae
Glaphyrosiphon intestinalis in Algaebase
10b. plants with broad, flat axes and
feathery (pinnate) shorter side
branches. Figs 26-30.

..... Halymenia floresia
Family: Halymeniaceae



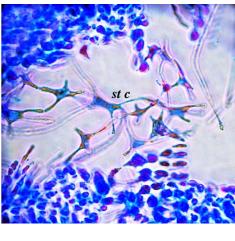



Fig. 25: *Grateloupia intestinalis*, tissue squash, stella cells (*st c*)



Fig. 26: Halymenia floresia ssp. floresia



 $Fig.\ 29:\ Halymenia\ floresia\ ssp.\ harvey ana$ 

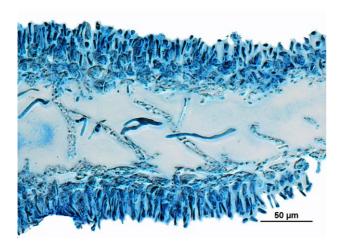
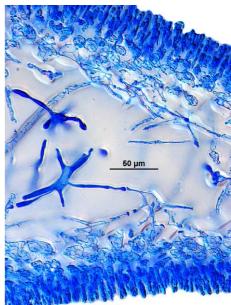
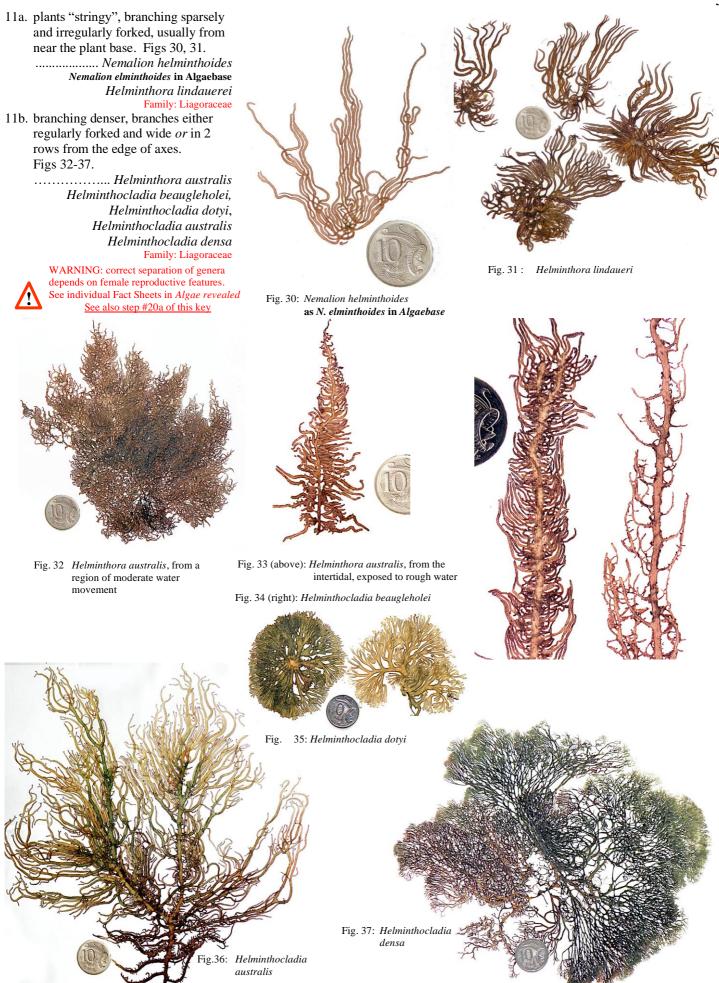
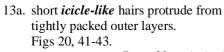



Fig. 27: Halymenia floresia ssp. floresia, cross section



Fig. 30: Halymenia floresia ssp. harveyana cross section



Baldock, R.N. (2024). Slimy/mucilaginous red algae. 11 pages Algae Revealed.

12a. axis 2-5 mm wide; large central thread in tbranch cores, outer layers (cortex) of *loose* branches, *hairs absent*. Figs 7, 38-40.

..... Acrosymphyton taylori



..... Dasyphloea insignis



13b. extremely fine, *long*, single-celled hairs with swollen tips protrude from loosely packed outer layers. Figs 44-46.

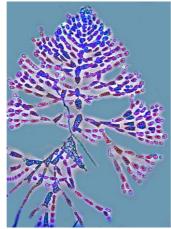

...... Dudresnaya australis



Fig. 41: Dasyphloea insignis



Fig. 38: Acrosymphyton taylori



per ax

Fig. 39: Acrosymphyton taylori, tissue sauash:

Fig. 39: Acrosymphyton taylori, tissue squash; central filament (c fil) radiating threads (periaxials, per ax), loose surface branches (cortex, co)

Fig. 40 (left): Acrosymphyton taylori, branch tip showing development of the central thread and radiating periaxials

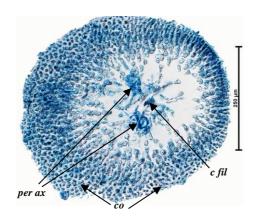



Fig. 42: Dasyphloea insignis, cross section; central filament (c fil), radiating branches (periaxials, peri), ending in small, tightly-packed cortical cells (co)

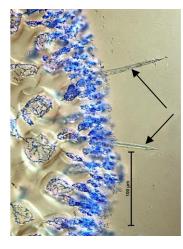



Fig. 43: Dasyphloea insignis, outer layer (cortex) with icicle-like hairs (arrowed)

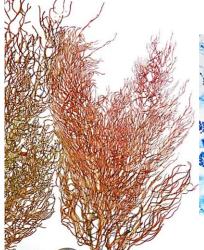



Fig. 45: Dua cent pacl

Dudresnaya australis, tissue squash; central filament (c fil), radiating loosely-packed cortical cells (co), female reproductive structures (cystocarps, cys)

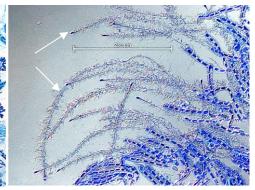
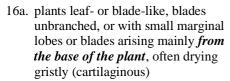




Fig. 46: Dudresnaya australis, loosely-packed outer layer (cortex), branches ending in extremely fine, single-celled hairs (arrowed) with swollen tips

14a. branches cylindrical but drying flat, 2-30 mm wide, branching mainly from a *gristly basal knob* up to 10 mm across; tissue squash shows a wide core of fine threads and chains of small cells in outer layers. Figs 47-49.

..... Gibsmithia womersleyi
Family: Dumontiaceae

14b. plants unbranched, *or* branching forked *or* arising from edges of a flat axis; basal knob *absent* 



16b. plants strap-like, *forked* once or twice, blade edges *crinkled*, surfaces *mottled* or marked with faint "*rivulets*". Figs 50, 51.

...... Tsengia laingii
Family: Nemastomataceae



Fig. 47: Gibsmithia womersleyi basal knob arrowed

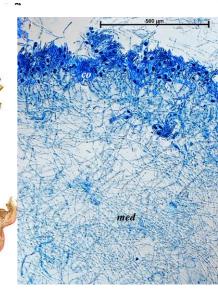
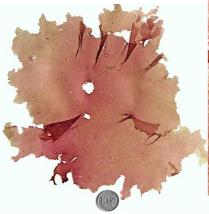




Fig. 48: Gibsmithia womersleyi, tissue squash, mass of fine threads in core (medulla, med) outer layer (cortex, co) with tetrasporangia



Gibsmithia womersleyi, basal knob arrowed





Figs 50 a,b: *Tsengia laingii*, two plants with contrasting shapes



Fig.51: *Tsengia laingii*, mottled surface, with some "rivulets"

17a. plants large, oval-shaped, *undivided*, arising from a small cylindrical stalk, drying gristly; female structures (cystocarps) embedded in the blade. Figs 52, 53. ..... Grateloupia ovata Family: Halymeniaceae Family: Grateloupiaceae in Algaebase see Kim et al (2021) 17b. plants branching usually only from the short base 18a. *small lobes* occur at blade edges, blade surface with "rivulet" markings, tissue squashes show ganglioid cells Figs 54–57. ...... Wetherbeella foliosa as Platoma foliosum in Womersley 1994 Family: Nemastomataceae 18b. small lobes *absent*, although old blades may be torn into large pieces; rivulet markings absent or present 19a. rivulet surface markings *present*; female structures without pores.

Figs 57-59.

obscure pores





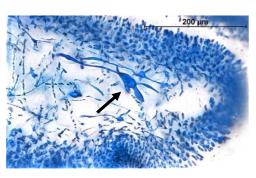

Fig. 52 (above): *Grateloupia ovata*, close-up of the small basal stalk

Fig. 53 (left): Grateloupia ovata





Fig. 54: *Platoma foliosum*, rivulet markings on the blade surface



..... Wetherbeella australica

Family: Nemastomataceae

as Platoma australicum in Womersley 1994

19b. rivulet markings on surface *absent*, female structures *with obvious or* 

Fig. 56 (left): Platoma foliosum

Cross section showing ganglioid cell (arrowed)

Fig. 56 (right): *Platoma foliosum*Surface view of opening of female cystocarp)

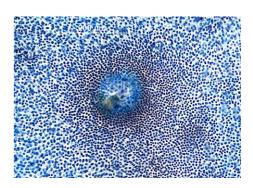





Fig. 57: Platoma australicum



Fig. 58: *Platoma australicum*, surface mottled, with rivulets

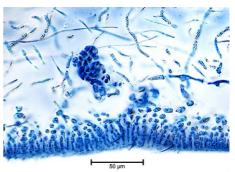



Fig. 59: *Platoma australicum*, cross section, (*cys*) sunken, pore *absent* 

20a. blade drying tough, edge straight, minute *gland cells* usually but not always *present* in the outer cell layer (cortex); female structures sunken, opening by a *pore*, wrapping (involucre) of filaments *absent*. Figs 60-63.

20b. blade soft, edge rippled, gland cells *absent*; female structures completely imbedded, wrapped in an *involucre of filaments* and with obscure openings. An aggressive introduced pest. Figs 64-67.

.....\*Grateloupia turuturu



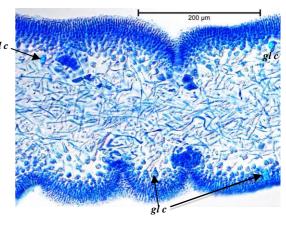



Fig. 62: *Schizymenia dubyi*, cross section, bright gland cells (*gl c*), cystocarps (*cys*) with sunken pores



Fig. 60: Schizymenia dubyi

Fig. 61 Schizymenia dubyi, plant base with short stalk, surface mottling absent

Fig. 63 (left): Schizymenia dubyi, cross section of outer parts of a blade showing compact rows of small cells and a single heavily stained gland cell

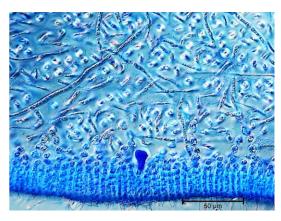
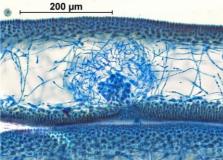






Fig. 64: \*Grateloupia turuturu





Figs 65-66: \*Grateloupia turuturu
Above small plant with divided lobes

Below cross section through a female structure that is fully imbedded and wrapped in an involucre



Fig. 67: \*Grateloupia turuturu Large, single bladed plant

21a. main branches (axes) regularly *forked*, narrow 3-5 mm wide. Figs 73-75.

- 22a. spidery (ganglionic) cells *present* in tissue squashes; plants regularly branched in 2 opposite rows (*pinnate*) throughout. Figs 68, 69.

..... Gelinaria ulvoidea Family: Halymeniaceae

22b. ganglionic cells *absent*, main branches (axes) *forked*, with numerous short side branches 2-2 mm wide at edges, giving the plant a fluffy appearance. Figs 70-72.



Fig. 68: Gelinaria ulvoidea

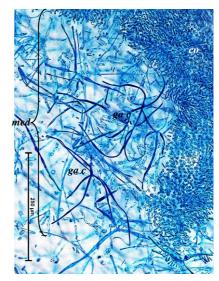



Fig. 69: *Gelinaria ulvoidea*, cross section, outer, compact layer of small, out-ward pointing cells (cortex, *co*), wide core of intertwined threads (medulla, *med*) with large, spidery (ganglionic) cells (*ga c*)



Fig. 70 *Tsengia comosa*, detail of forked main branches fringed by small side branches



Fig. 71 Tsengia comosa

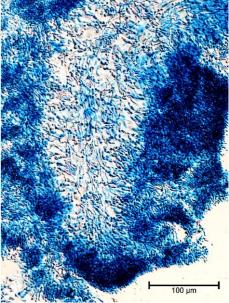



Fig. 72: *Tsengia comosa*, tissue squash of branch tip



Fig. 73: Tsengia feredayae, regularly forked pressed plants with branches that have shrunk and darkened during preparation



Fig. 74: Tsengia feredayae

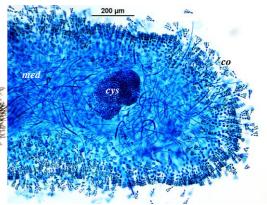



Fig. 75: Tsengia feredayae, tissue squashes; core of threads (medulla, med) tufts of small cells (cortex, co), female structure, (cystocarp, cys)

## SPECIES INCLUDED IN THIS KEY

| species                      | author/s                           | page/s | Name in Algaebase              | author/s                                   |
|------------------------------|------------------------------------|--------|--------------------------------|--------------------------------------------|
| Acrosymphyton taylori        | I. Abbott                          | 6      |                                |                                            |
| Dasyphloea insignis          | Montagne                           | 3      |                                |                                            |
| Dudresnaya australis         | J. Agardh ex Setchell              | 6      |                                |                                            |
| Gelinaria ulvoidea           | Sonder                             | 10     |                                |                                            |
| Gibsmithia womersleyi        | Kraft & Ricker ex Kraft            | 7      |                                |                                            |
| Glaphyrosiphon intestinalis  | (Harvey) Leister & W.A.Nelson      | 4      |                                |                                            |
| Gloiocladia australis        | (J. Agardh) R.E. Norris            | 2      | Gloioderma australe            | J. Agardh                                  |
| Gloiocladia fruticulosa      | (Harvey) R. E, Norris              | 1, 2   |                                |                                            |
| Gloiocladia halymenioides    | (Harvey) R. E, Norris              | 2      | Gloioderma halymenioides       | (Harvey) J.<br>Agardh                      |
| Gloiocladia polycarpa        | (Harvey) Womersley                 | 2      |                                |                                            |
| Gloiophyllis barkeriae       | (Harvey) J. Agardh                 | 1      | Gloiophyllis barkerae          | (Harvey) J.<br>Agardh                      |
| Grateloupia intestinalis     | (Harvey) Setchell ex P.G.Parkinson | 4      | Glaphyrosiphon<br>intestinalis | (Harvey)<br>Leister &<br>W.A.Nelson        |
| Grateloupia ovata            | Womersley & J. Lewis               | 8      |                                |                                            |
| *Grateloupia turuturu        | Y. Yamada                          | 9      |                                |                                            |
| Halymenia floresia           | (Clemente) C. Agardh               | 4      |                                |                                            |
| Helminthocladia australis    | Harvey                             | 1      |                                |                                            |
| Helminthocladia beaugleholei | Womersley                          | 5      |                                |                                            |
| Helminthocladia densa        | (Harvey) Schmitz & Hauptfleisch    | 5      |                                |                                            |
| Helminthocladia dotyi        | Womersley                          | 5      |                                |                                            |
| Helminthora australis        | J. Agardh ex Levring               | 5      |                                |                                            |
| Helminthora lindaueri        | Desikachary                        | 5      |                                |                                            |
| Nemalion helminthoides       | (Velley) Batters                   | 5      | Nemalion elminthoides          | (Velley) Batters                           |
| Nothogenia fastigiata        | (Bory) P.G.Parkinson               | 3      |                                |                                            |
| Platoma australicum          | Womersley & Kraft                  | 8      | Wetherbeella australica        | (Womersley &<br>Kraft) Saunders<br>& Kraft |
| Platoma foliosum             | Womersley & Kraft                  | 8      | Wetherbeella foliosa           | (Womersley &<br>Kraft) Saunders<br>& Kraft |
| Schizymenia dubyi            | (Chauvin ex Duby) J. Agardh        | 9      |                                |                                            |
| Tsengia comosa               | (Harvey) Womersley & Kraft         | 10     |                                |                                            |
| Tsengia feredayae            | (Harvey) Womersley & Kraft         | 10     |                                |                                            |
| Tsengia laingii              | Womersley & Kraft                  | 7      |                                |                                            |

## **REFERENCES**

- Algaebase: listing the world's algae <a href="https://www.algaebase.org/">https://www.algaebase.org/</a> accessed March 2025
- Kim, S.Y., Lee, H.W., Yang, E.C., Boo, S.M., Lopez-Bautista, J., Fredericq, S., D'Archino, R., Yoon, H.S., & Kim, M.S. (2021). Resurrection of the family Grateloupiaceae emend. (Halymeniales, Rhodophyta) based on a multigene phylogeny and comparative reproductive morphology. Frontiers in Ecology and Evolution 9(775627): 1-13, 4 figs, 1 table
- Womersley, H.B.S (1994). The Marine Benthic Flora of Southern Australia Rhodophyta Part IIIA
- Womersley, H.B.S (1996). The Marine Benthic Flora of Southern Australia Rhodophyta Part IIIB