Author Archives: Jürgen

New journal articles: May 2020

Hovenia dulcis. Line drawing by Anita Barley.

Today, the State Herbarium of South Australia published two articles in Vol. 33 of its journal Swainsona online.

(1)  J. Kellermann, Nomenclatural notes and typifications in Australian species of Paliureae (Rhamnaceae). (2.6mb PDF)

This is the first paper resulting from the ABRS funded research project on the plant family Rhamnaceae, undertaken by State Herbarium botanist Jürgen Kellermann and colleagues from around Australia. The nomenclature of the species of Hovenia and Ziziphus occurring in Australia is reviewed, including the role of the Paul Hermann herbarium in London; some plant names are typified. A key to the the Australian species, as well as line drawings are also provided.

(2) E.M. Davison, D. Giustiniano & J.F. Haska, Clarification of the type locality of Amanita peltigera (Agaricales, Amanitaceae), phylogenetic placement within subgenus Amanitina, and an expanded description. (2.3mb PDF).

The authors examined the native mushroom Amantia peltigera with molecular and morphological methods. They show that the type collection is from South Australia, not Western Australia, as stated in the original publication. They place the species in a phylogeny of the genus and provide a revised description and illustrations of A. peltigera.

Amanita peltigera, collected on Kangaroo Island. Photo: J.F. Haska.

To access content of all volumes of Swainsona and the Journal of the Adelaide Botanic Gardens since Vol. 1 (1976), please visit the journal’s web-site at flora.sa.gov.au/swainsona.

Fire blog 5: Floral wonderland – pretty flowers

In a previous blog, we introduced three species that often occur after fire.

Other attractive species likely to be seen on Kangaroo Island and elsewhere are branched everlasting, Coronidium adenophorum (F.Muell.) Paul G.Wilson, purple daisy bush, Olearia rudis (Benth.) Benth., as well as ironstone mulla mulla, Ptilotus beckerianus (F.Muell.) F.Muell., this last species appeared in hundreds in post 2007 fire scars near the Ravine des Casoars.

Coronidium adenophorum, Olearia rudis & Ptilotus beckerianus (from LEFT to RIGHT). Habit of plants with flowers and new seedling (for O. rudis). Photos: SA Seed Conservation Centre.

Contributed by State Herbarium botanist Martin O’Leary.

Fire blog 4: Fungi and fire

Orange disc fungus, Byssonectria fusispora, surrounded by mosses. Photo: D. Catcheside.

Fungi are essential in all ecosystems, acting as recyclers, helpers of almost all plants and improving soil health.  After fire, much of the organic material in soils may have burnt, leaving a blackened mass of fine, silty particles and ash. The ash is highly alkaline and unfavourable for plant regrowth. The fungi help in restoration of soil health, as recyclers of burnt litter and wood and as partners with plants in re-establishing the vegetation.

Two disc fungi, orange Pulvinula archeri, brown-lilac Peziza tenacella. Photo: D. Catcheside.

A group of fungi whose spores germinate almost immediately after fire are the disc fungi (e.g. Peziza and Pulvinula, image above). These act as colonisers. Their fine thread-like hyphae bind soil particles, stabilising the soil and helping to reduce erosion. They change the highly alkaline ash (with a pH of up to 10) to soils which are approximately neutral (pH 7). Structurally, the hyphae form a network, a ‘scaffolding’, improving soil aeration and water percolation. The often dense carpets of disc fungi covering the bare soil not only reduce erosion but also provide protection for small plants such as mosses, grasses and herbs (see top image). As the fungal hyphae and plant roots grow their developing networks increase movement of gases and water through the soil. Other groups of fungi are saprotrophs, breaking down and recycling burnt litter and wood.

Coprinellus angulatus, a saprotrophic fungus (left image). Stereum hirsutum, a saprotroph on wood (right image). Photos: D. Catcheside.

Pam Catcheside and Danielle Calabro with a sclerotium of Laccocephalum mylittae. Photo: D. Catcheside.

There is a definite succession of fungi after fires.

Amongst the first to appear, often only a day or two after fire, are strange, hard, mushroom-like fungi with pores, not gills in the genus Laccocephalum (see image at bottom of this post). Their fruit-bodies grow from an underground storage-organ called a sclerotium. The sclerotium of Laccocephalum mylittae, native bread, was eaten by Aborigines (image on right). It may weigh up to 20 kg.

Yellow, orange, brown and black disc fungi appear. Some species fruit only in the first year after fire, others in the second and some for several years. As litter builds up recycling fungi break it down returning nutrients to the soil.

Mycorrhizal fungi (e.g. from the genus Laccaria, image below), which form symbiotic relationships with plants become re-established, collecting nutrients and water for the partner plant and receiving energy-giving sugars in return. Gradually, the web of life with all its complex communication systems regains momentum, habitats are re-established, insects and other animal life return and natural cycles continue.

We observed this pattern after the 2007 bushfires on Kangaroo Island. Since Flinders Chase National Park is relatively self-contained, weeds which often invade bare areas did not threaten the native systems. Keeping out weeds after a fire is a major concern.

Laccaria sp., a mycorrhizal fungus. Photo: D. Catcheside.

Another concern is that it takes time for the bush to re-establish itself, some studies showing that it takes at least five years but this time lapse varies with different habitats. We have found that most groups of fungi have returned to pre-fire levels. It is now 12 years since the last major fires on the island and Kangaroo Island has shown itself to be resilient.

Laccocephalum sp. showing swollen sclerotium. Image of herbariumspecimen PSC3033 before drying. Photo: D. Catcheside.

Further reading

Atlas of Living Australia. Geopyxis carbonaria (Alb. & Schwein) Sacc.

Catcheside, P. (2009). Phoenicoid discomycetes in Kangaroo Island. Fungimap Newsletter 38: 5-8.

George, P. (2008). Fungimap survey on Kangaroo Island. Fungimap Newsletter 36: 13-15.

Kalotas, A.C. (1996). Aboriginal knowledge and use of fungi. In Orchard, A.E. (Exec. Ed.), Mallett, K. & Grgurinovic C. (Vol. Eds.). Fungi of Australia, Vol. 1B: Introduction-Fungi in the Environment. (Australian Biological Resources Study, Canberra).

McMullan-Fisher, S. J. M., May, T. W. & Keane, P. J. (2002). The macrofungal community and fire in a Mountain Ash forest in southern Australia. Fungal Diversity 10: 57-76.

Robinson, R.M. (2009). Laccocephalums on Kangaroo Island. Fungimap Newsletter 37: 6-7.

Robinson, R. (2007). Laccocephalum mylittae – Native Bread. (Dept of Environment & Conservation: Manjuimup). [Fungus Factsheet 18/2007].

Spooner, B. & Roberts, P. (2005). Fungi. (Collins: New Naturalist Library).

Yales, D. (2019). Fire-spawned forest fungi hide out in other organisms, study finds. PHYS.ORG website.

Written by State Herbarium Hon. Research Associate Pam Catcheside.

Fire blog 3: Floral wonderland – not weeds!

Flinders Chase is likely to transform into floral wonderland in the springs of 2020 and 2021. In particular many short lived ephemerals will germinate from dormant seed, grow quickly, flower and then disappear in a year or two until the next fire. Some good examples are:

Kangaroo Island cressIrenepharsus phasmatodes Hewson, has small white, but strongly fragrant flowers, it occurs only on Kangaroo Island.

Irenepharsus phasmatodes growing on Kangaroo Island. Photo: SA Seed Conservation Centre.

False tobacco — Apalochlamys spectabilis J.H.Willis, has pungent smelling leaves and large spike of many flowers, it grows in dunes and other sandy soils.

Apalochlamys spectabilis. Photos: SA Seed Conservation Centre & R. Taylor (inset).

Oondooroo — Solanum simile F.Muell, has distinctive lush green foliage and blue flowers, it is often associated with mallee eucalypt woodlands.

Solanum simile at Mount Remarkable National Park. Photo: SA Seed Conservation Centre.

All these three species were growing together along the Snake Lagoon to Rocky River mouth walk in 1993 after a fire, with specimens lodged in the State Herbarium collection.

These species are sometimes mistaken as weeds because of their appearance and life cycle.

Contributed by State Herbarium botanist Martin O’Leary.

Super seaweed?

Seaweeds − best called algae as they are not usually pest plants − are increasingly newsworthy. Browse through Chinatown food stores and they can be found advertised both as tasty additives to Asian cuisine and as healthfoods, providing Omega oils, iodine and potassium supplements to diets. If you find a number from 400 to 407 listed on your chocolate bar, milk drink, can, bottle or jar of food then the substance it denotes comes from a brown or a red alga. These algal additives keep food from separating out and looking “gluggy”.

Algae farm ponds in Whyalla, South Australia, used to produce β-carotene. Photo: CSIRO.

The bright red colour of some canned foods has almost certainly been improved by the addition of an extract of single-celled green algae that have oversized red eyespots made of carotene, similar to the stuff in carrots. It should be listed on the can as 160a.

A while back, information on green algae that can be cultured in order to extract biofuel was newsworthy, although the viability of such a scheme has its sceptics.

Recently, articles appeared about a red alga that lowers methane production by bacteria in ruminant livestock (cattle, sheep, goats) in Australia. Methane far exceeds the warming effects of CO2 on the atmosphere, so any decrease in the contribution of methane to the air by millions of ruminants would be most useful.. There are numerous articles available on this possibility but also some warnings about the alga’s potential toxicity.

Asparagopsis taxiformis (LEFT) and A. armata (RIGHT), Cape Peron, Western Australia. Photo: J. Huisman.

Magnified branches of A. armata: on the left, a fluffy vegetative branch, at right, a specialised, barbed grappling branch. Photo: B. Baldock.

So, what is this new “seaweed star”? A fluffy Red alga, about 250 mm tall, widespread in southern Australian and warm to tropic seas globally, probably introduced to the Mediterranean and Atlantic seas. It is Asparagopsis.

There are possibly 3 species, but one has been recorded only in 1945, so we can concentrate on the two common ones – Asparagopsis taxiformis and A. armata – that are being researched as methane suppressants.

Serious divers will recognise encounters with A. armata, its specialised barbed branches clinging annoyingly to wetsuits. Magnified, the effectiveness of the barbs in dispersing this species that lives attached to other algae – an epiphyte – can be appreciated. A. taxiformis is attached to hard surfaces, and has no barbed branches.

A surprising structural feature of both species is that they are made of threads or filaments, best seen under the microscope at tips of plants before the addition of cells that wrap or corticate the initial threads. These filaments can be found internally, even in mature branches, if a lengthwise section is investigated microscopically.

Asparagopsis armata, apical filaments (LEFT) and section through a mature branch (RIGHT). Photo: B. Baldock.

Perhaps more surprising about the two species is that they are sexual stages only. In Asparagopsis taxiformis both female and male structures are produced on the one plant, i.e. it is monoecious. Asparagopsis armata supposedly has separate male and female plants, a dioecious condition, but some question the reliability of this fact.

Asparagopsis taxiformis under the microscope: egg-shaped, coloured female structures with apical openings (cystocarp, LEFT) and small, cigar-shaped, white male structures near branch ends (spermatangial heads, RIGHT). Photo B. Baldock.

You may know that practically all Red algae have a life cycle that alternates between a sexual stage and an asexual or spore-plant stage. In the case of an Asparagopsis species, the spore stage is tiny, unobtrusive, epiphytic and so different to the sexual stages that originally it was thought to be a separate genus – Falkenbergia. It too has a thread-like construction, but largely lacks the cortication of the sexual phase.

Both stages of Asparagopsis – sexual and asexual – have been identified here and in the Mediterranean. Both sexual and asexual stages produce the methane inhibiting substance, bromoform. As the name implies, bromoform is analogous to chloroform (substitute Cl with Br in the formula). It too has a sweet, antiseptic smell like chloroform and has been synthesised in the past for industrial uses, including as a solvent, fire retardant and sedative. It may however have harmful effects on ozone, if released into the atmosphere, and possible carcinogenic effects.

Falkenbergia rufalanosa, the spore stage of Asparagopsis armata (LEFT), and viewed under a polarising microscope (RIGHT). Photo: B. Baldock.

As an economic retardant to ruminant methane production there are a lot of scientific and economic considerations to be made. Cropping of sporadic, naturally occurring populations of Asparagopsis would not be a viable proposition, but, fortunately plants can be grown vegetatively, so the focus of research now seems to be on aquaculture and the feasibility of doing this in vast saltwater land ponds required for the production of the quantities that would be required.

Commercial interests aside, Asparagopsis, with its intricate anatomy and cryptic life history, remains a fascinating red alga and worthy of investigation.

For additional descriptions and illustrations of species, see the following Algae revealed fact sheets:

  • Falkenbergia – Step 7b and Figs 22-24 in the Filamentous red algae Master Key (2.6mb PDF)
  • Asparagopsis armata (0.7mb PDF)
  • Asparagopsis taxiformis (0.5mb PDF)

Written by State Herbarium Hon. Research Associate Bob Baldock.