Bush Blitz reports available

In 2016 and 2017, State Herbarium of South Australia botanists participated in two Bush Blitz expeditions to Lake Torrens and the Great Victoria Desert. The two reports on the collections and findings about plants, fungi and algae were submitted to Bush Blitz soon after the field trips. Part of the information was presented in the official Bush Blitz survey reports, but not the full data.

The detailed reports on both expeditions are now available:

(1) Lang, P.J., Kellermann, J., Bell, G.H., Brodie, C.J., Vonow, H.P. & Waycott, M. (2018). Lake Torrens Bush Blitz survey: Vascular plants, cyanobacteria, algae, bryophytes, lichens and macrofungi. Report for Bush Blitz, Australian Biological Resources Study, Canberra. (State Herbarium of South Australia: Adelaide). (5.1mb PDF).

The 2016 Bush Blitz Survey to Lake Torrens and five adjoining pastoral leases provided an opportunity to greatly increase the knowledge on the flora of the area. The preceding seasonal rainfall provided high quality conditions for plant growth and flowering and also the presence of water in areas of Lake Torrens and surrounds. A total of 382 unique taxa were recorded on the survey, comprising 358 vascular plants, 1 bryophyte, 4 algae, and 7 cyanobacteria; 12 lichens were also recorded.

Significantly, 32 vascular plant taxa and 6 cryptogams (1 bryophyte, 3 cyanobacteria, 2 algae) were recorded from the study area for the first time.

Including previous records, this resulted in a total of 699 vascular plants for the survey area, of which 30 are introduced, weedy plants. Five of the weed taxa are highlighted as needing control measures while they are still in low numbers. The remaining 25 weed taxa are of low concern, but should be monitored. In total, 60 cryptogams are recorded for the area, including 18 bryophytes, 4 algae, 7 cyanobacteria, 12 lichens and 19 fungi. Non-lichenous fungi are covered in a separate report by T. Lebel, but the 16 taxa recorded on survey are also listed in Appendix III.

The survey resulted in the collection of 996 specimens and complementary observational records. Leaf samples in silica gel for future DNA analysis were collected from almost all specimens.

The Botany Team processing plants at McCormack Reserve, Roxby Down Station, during the Lake Torrens expedition. Photo: P.J. Lang.

(2) Lang, P.J., Kellermann, J., Bell, G.H., Canty, P.D. & Waycott, M. (2019). Great Victoria Desert Bush Blitz: Vascular plants, bryophytes, lichens and macrofungi. Report for Bush Blitz, Australian Biological Resources Study, Canberra. (State Herbarium of South Australia: Adelaide). (2.4mb PDF).

The 2017 Bush Blitz Survey to the Great Victoria Desert (GVD) targeted Mamungari Conservation Park (CP) and the adjoining area of the Maralinga Tjarutja Lands. It provided an opportunity to greatly increase the knowledge on the flora of the area.

The survey resulted in the collection of 660 specimens with nearly all the vascular plant collections having duplicate samples for PERTH herbarium plus leaf tissue samples in silica gel for future DNA analysis. The collections comprise 539 vascular plants, 25 bryophytes, 18 macrofungi and 78 lichens. These represent 358 unique taxa (excluding hybrids and intergrades), comprising 319 vascular plants, 9 bryophytes, 12 macrofungi and 18 lichens.

A validated checklist for the area was compiled, incorporating ALA specimen based records. The total number of accepted vascular plant taxa is 529 for the GVD study area and 436 for Mamungari CP. The Bush Blitz Survey resulted in a total of 48 vascular plant taxa beingcollected from the study area for the first time, with two of these also new records for South Australia (SA).

The checklist for cryptogams comprises 73 taxa (20 bryophytes, 19 fungi and 34 lichens), but due to limitations of available historical data this is not a definitive list for those groups. Four of the cryptogam taxa collected on survey are potentially new to SA.

Escarpment at the western edge of Serpentine Lakes in Mamungari Conservation Park, Great Victoria Desert. Photo: P.D. Canty.

The official Bush Blitz Survey Reports of the two expeditions with lists of recorded plants and animals, as well as an overview map, are available here:

Reports for previous Bush Blitz expeditions in South Australia can be accessed here:

Compiled by State Herbarium botanist Jürgen Kellermann.

Research news: Australian plant trait data

AusTraits is an open-source, harmonized database of Australian plant trait data. Plant traits are morphological, anatomical, physiological, biochemical and phenological characteristics of plants. The database synthesises data on 448 traits across over 28640 Australian plant taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. The project is lead by Daniel Falster, Rachael Gallagher, Elizabeth Wenk and Dr Hervé Sauquet.

Plant trait data are the basis for a vast area of research, spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. The State Herbarium of South Australia also contributed data of plant characteristics from the Flora of South Australia to this project.

Recently, the AusTraits database was introduced to the public with the following publication. Among the over 200 authors is also State Herbarium botanist Jürgen Kellermann.

Falster, D., Gallagher, R. et al. (2021). AusTraits, a curated plant trait database for the Australian flora. Scientific Data 8: 254, 20 pp. & online supplement.

Swainsona pyrophila. Photo: SA Seed Conservation Centre.

Rotters, helpers and roo poo – fungi after fire

Pyronema omphalodes. Photo: David Catcheside.

This winter, Pam and David Catcheside continued their surveys of the fungi on Kangaroo Island after the catastrophic fires of 2019 and 2020. Reports on previous findings were published in these blogs:

After a brief, preliminary survey in April, we considered that July would be optimum for the main survey, which would include Dr Teresa Lebel, Senior Botanist at the State Herbarium of South Australia, Helen Vonow, Curations Manager, and Julia Haska, an Herbarium Research Associate. However, a COVID lockdown aborted that trip: Julia was already on the island, but just as Teresa and Helen arrived at Cape Jervis, well ahead of time for the noon ferry, they learned a lockdown would start at 6pm. Pam and David were en route at Lucky Bay so as a small compensation we all met up at Deep Creek Conservation Park to look at fungi there, before heading home in time for the curfew. The variety and abundance of fungi at Deep Creek made it even more galling that we were not able to explore the fungal offerings of Kangaroo Island, though we did make some interesting collections.

Although Teresa, Helen and Julia were unable to join us, we were able to schedule a week-long KI trip in late August. However, as the fungal fruiting season in South Australia is usually from June to early August, we knew we had missed the optimum time. An additional constraint was that some sites we usually survey were off limits due to feral pig control operations.

We recorded 35 species of fungi, making collections of 27 of these. One third (10 species) were fire-associated, pyrophilous species and included disc, stonemaker, as well as wood-rotting fungi.

Disc fungi

Disc fungi are amongst the early colonisers, forming mats over the soil surface, helping to bind soil particles and reduce erosion. We found a few patches of the orange Pyronema omphalodes (above) and scattered groups of Pulvinula, whose bright orange discs with their paler, smooth and hairless undersides stand out against the burnt soil.

Pam never trusts the outward appearance of the majority of disc fungi, recognising that the microscopic characters of ascospore size and number, ascus size and shape and features of other cell structures are necessary to determine species. Indeed, each of the four collections of Pulvinula that were made differed in some of these characters, suggesting they belong to different species, two of them possibly undescribed. Planned molecular work will clarify this.

Pulvinula tetraspora (left) and its 4-spored asci (right). Photos: David & Pam Catcheside.

Other pyrophilous disc fungi such as species of orange Anthracobia and black-brown Plicaria and Peziza, found after the 2007 fires and in 2021, were absent. It is possible that these had fruited early this year in June or July but it appears probable there is a lower abundance and fewer species of pyrophilous discs than after the 2007 fires.

Pulvinula sp. (left) with 8-spored asci (right). Photo: David & Pam Catcheside

Mycorrhizal fungi

Scleroderma albidum, an earthball. Photo: David Catcheside.

Mycorrhizal fungi are essential in all forest ecosystems, providing minerals and water to their partner tree. Laccaria species, common colonisers of land cleared by fire or other disturbance, were present, but few other mycorrhizal fungi were found — just a few specimens of Amanita and Cortinarius and an earthball, Scleroderma albidum (right).

Mycorrhizal fungi are expected to be affected when their symbiotic plant partners are killed by fire (Dove & Hart 2017) so it is not surprising that they will be depleted following fire. Again, it is possible that they fruited earlier but it is of concern that we found so few of these important fungi.

Wood-rotting fungi

Fungi are responsible for much of the breakdown and recycling of organic matter, releasing nutrients and making them available for new plant growth (Ingold & Hudson 1993; Crowther et al. 2012). After the summer fires of 2019-2020 there was plentiful substrate:  large quantities of fallen bark, dead branches, logs and trunks were at all sites. Rainfall on Kangaroo Island in 2021 had been high and we had expected to find fluffy mycelium and patches of flat ‘paint’ fungi on some of the wood. However, in spite of our careful examination, even the lowest and dampest layers of the piles of fallen bark showed little evidence of the usual ‘rotters’. We surmised that the fungal inoculum was insufficient to start breakdown of the bark.

]We did find a few wood-rotting bracket fungi. One of the most common was Porodisculus pendulus, which grew in extensive swarms up the burnt trunks of eucalypts. This is a small hoof-shaped pored bracket and the specimens were much tinier, less than half the size, than those we had found after the 2007 fires. We also noted the lilac bracket, Rhodofomitopsis lilacinogilvaand shelf fungus, Stereum hirsutum, but these are not considered to be obligate fire-associated wood rotters.

Wood rotting fungi: Porodisculus pendulus on burnt eucalypt trunks (top), Rhodofomitopsis lilacinogilva (middle), and Stereum hirsutum (bottom). Photos: David Catcheside.

Dung fungi

On a brighter note! One little fungus that was in abundance was Poronia erici. It was growing mostly on kangaroo dung but it also grows on the dung of other marsupials. It forms hard white button-like discs punctuated with tiny black pores which communicate with minute ascus-containing flasks embedded in the disc. Spores are released through the narrow necks of these flasks. The presence of this fungus is a positive sign that marsupials are returning to the burnt sites on Kangaroo Island and possibly reintroducing fungi lost to the fire.

Poronia erici. Photo: David Catcheside.

Monitoring of fungal succession after fire and re-establishment of pre-fire fungal assemblages may inform better management of the environment after fire. It was unfortunate that COVID-19 prevented us from a proper assessment this year.

Further reading

  1. Atlas of Living Australia. Pulvinula Boud.
  2. Catcheside, P. (2009). Phoenicoid discomycetes in Kangaroo Island. Fungimap Newsletter 38: 5-8.
  3. Crowther, T., Boddy, L. & Hefin Jones, T. (2012). Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME Journal 6: 1992–2001.
  4. Dove, N.C. & Hart, S.C. (2017). Fire reduces fungal species richness and in situ mycorrhizal colonization: a metaanalysis. Fire Ecology 13(2):37–65.
  5. George, P. (2008). Fungimap survey on Kangaroo Island. Fungimap Newsletter 36: 13-15.
  6. Grgurinovic, C.A. (1997). Larger Fungi of South Australia. (The Botanic Gardens of Adelaide and State Herbarium and The Flora and Fauna of South Australia Handbooks Committee: Adelaide).
  7. Ingold, C.T. & Hudson, H.J. (1993). Ecology of saprotrophic fungi. In: The Biology of Fungi, pp. 145-157. (Springer: Dordrecht).
  8. McMullan-Fisher, S.J.M., May, T., Robinson, R., Bell, T., Lebel, T., Catcheside, P. & York, A. (2011). Fungi and fire in Australian ecosystems: a review of current knowledge, management implications and future directions. Australian Journal of Botany 59: 70-90.

Contributed by Pam Catcheside (State Herbarium Hon. Associate)
David Catcheside (Flinders University).

Spring is here!

Pond in Rymill Park. Photo: B. Baldock.

Lengthening days, bursts of warmer weather – it must be spring. And with it, flower buds of terrestrial plants that have been surreptitiously developing over winter may suddenly burst into a great show of reproductive activity. But also, perhaps not as obvious, and often poorly appreciated, is the frantic activity in freshwater creeks, ponds and water storages in preparation for the drought of coming summer.

We are fortunate in the State Herbarium of South Australia that we have enthusiastic volunteers who not only help greatly in the day-to-day activities of the herbarium, but keep an eye on changing natural events and bring in plants that appear unusual or noteworthy. Recently one of our volunteers brought a sample of green “slime” for us to investigate. It was wrapped around the minute roots of some floating duckweed blown to the edge of a nearby city park pond.

Under the microscope a whole ecosystem of plants and animals was revealed – something more remarkable than the term “slime” implies. The basis of this ecosystem was a striking green alga – Oedogonium. This had strange swellings, some green, some reddish, along the lines of green cells that make up the unbranched threads or filaments of its plant body or thallus.

Oedogonium algae filaments with pine pollen (top image). Photos: B. Baldock.

Interspersed among the filaments were pine pollen grains that had dropped into the pond. These looked like Mickey Mouse hats, hence they were easily identifiable. There were also many colourless, single-celled animals going about their business, mainly filtering out single-celled algae or other animals smaller than themselves.

The filaments also acted as the base for minute threads of innocuous, colourless sulfur-bacteria less than 1 millionth of a metre (1 μm) in diameter. These could be identified, because they contained minute droplets of sulfur that caught the light brilliantly under the highest magnification of our microscopes.

Excitingly, the Oedogonium was reproducing. Swollen cells were acting as eggs (oogonia), and some had tiny attachments – dwarf “males” (or antheridia) – that were fertilizing the oogonia (males can be produced by neighbouring filaments or the same filament). Following fertilisation, red-brown, tough-walled zygotes had formed, ready to germinate into a new filament if conditions were right, or to sit dormant in the dried mud of waterways until the coming rains next season.

Oedogonium algae filaments with sulfur bacteria, oogonium (egg) and antheridium (male). Photos: B. Baldock.

It’s a pity that algal growth in our waterways such as that described above is denigrated. We are conditioned into thinking water bodies should be clear and blue, a state generally signalling they are sterile and lack vibrant, living ecosystems.

And, we rightly fear the appearance of the grey-green scum of toxic, blue-green “algae” that may form in waterways towards the end of summer. But, to be correct, “blue-greens” are bacteria, not true algae. This bacterium blooms at the boundary between an upper, warm, brightly lit layer and a nutrient-rich, cooler bottom layer that forms in still, non-flowing bodies of water. In cities, the nutrients generally come from wastewater run-off, including garden fertilizer and domestic pet excrement.

As a response to blooms of organisms in freshwater we seasonally often add our own toxins such as copper salts and hydrogen peroxide to kill them, wrecking benign living aquatic communities that may have helped in past times to obviate the threat of these blue-greens, by denying them excessive nutrients and establishing broader and more stable food-pyramids.

I hope you agree with me that green ”slime” can be more interesting than its name suggests. And perhaps you might appreciate it, understand its complexities and learn to live with it rather than try to obliterate it.

Further information

  • Entwisle, T.J., Sonneman, J.A. & Lewis, S.L. (1997). Freshwater algae in Australia. (Sydney : Sainty & Associates). – The book is being converted to a website, part of which is already available online.
  • CSIRO (2021). What are blue-green algae. [accessed: September 6, 2021].

Written by Hon. Research Associate Bob Baldock.